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Abstract—Picture Wise Just Noticeable Difference (PW-JND),
which accounts for the minimum difference of a picture
that human visual system can perceive, can be widely used
in perception-oriented image and video processing. However,
the conventional Just Noticeable Difference (JND) models cal-
culate the JND threshold for each pixel or sub-band separately,
which may not reflect the total masking effect of a picture accu-
rately. In this paper, we propose a deep learning based PW-JND
prediction model for image compression. Firstly, we formulate
the task of predicting PW-JND as a multi-class classification
problem, and propose a framework to transform the multi-class
classification problem to a binary classification problem solved by
just one binary classifier. Secondly, we construct a deep learning
based binary classifier named perceptually lossy/lossless predictor
which can predict whether an image is perceptually lossy to
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another or not. Finally, we propose a sliding window based search
strategy to predict PW-JND based on the prediction results of the
perceptually lossy/lossless predictor. Experimental results show
that the mean accuracy of the perceptually lossy/lossless predictor
reaches 92%, and the absolute prediction error of the proposed
PW-JND model is 0.79 dB on average, which show the superiority
of the proposed PW-JND model to the conventional JND models.

Index Terms— Just noticeable distortion, convolutional neural
network, visual perception, image quality assessment.

I. INTRODUCTION

HE Ultra-High-Definition (UHD), Three Dimensional

(3D) [1], and Virtual Reality (VR) images and videos
with the ability to provide a more immersive and realistic
experience than conventional multimedia, are becoming more
and more popular with consumers in streaming services [2].
However, the bandwidth and storage required to support
UHD, 3D, and VR streaming services are several or even more
times the size of that required for the traditional images and
videos, which has been a bottleneck of the streaming services
industry. The main-stream of the current image/video cod-
ing techniques [3] are signal-processing-based, which mainly
consider the statistical properties of visual content. They are
becoming difficult to achieve further improvement in reducing
the size of images and videos without perceptual quality
degradation. As we know, the ultimate receiver of most visual
content is the Human Visual System (HVS), therefore it
is important to develop image/video processing technologies
incorporating the characteristic of HVS [4] for streaming
services industry.

It is well known that humans cannot perceive the small
changes in the images/videos due to the psychological and
physiological mechanism of HVS. Therefore the processed
images/videos have visual redundancy which can be removed
without any perceptual quality degradation. Just Noticeable
Difference (JND) refers to the minimum distortion HVS
can perceive, which has been widely used in image/video
processing, e.g., perceptual image/video coding [5]-[7], image
enhancing [8], and objective quality estimation [9]. The
existing JND models can be divided into two categories:
1) pixel-domain models [10]-[15] calculate JND threshold for
each pixel directly in the pixel domain; 2) sub-band domain
models transfer pixel domain images to the sub-band domain,
e.g., Discrete Cosine Transformation (DCT), then calculate the
JND threshold for each sub-band [16]-[20].
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Pixel domain JND models mainly focus on the background
luminance adaptation and spatial contrast masking. In [10],
a novel spatial masking function was introduced, which was
combined with luminance adaptation to deduce the overall
JND thresholds. Wu er al. [11] suggested that there exists
disorderly concealment effect resulting in high JND thresholds
of the disorderly region, and proposed a free energy based
JND model aiming to improve the accuracy of JND threshold
estimation of texture regions. In [12], a novel pattern mask-
ing function deduced from luminance contrast and structural
uncertainty was incorporated into the proposed JND model.
Wang et al. [13] proposed an edge profile reconstruction based
JND model for screen content images. Each edge profile was
decomposed into its luminance, contrast, and structure part,
each of which was evaluated respectively. Wu et al. [14]
proposed an improved pattern masking function based model,
where the pattern complexity was calculated as the diversity
of orientation in local region. In [15], a new JND model was
proposed which considers visual saliency. However, the pixel
domain JND models can hardly be incorporated into sub-band
image/video compression systems.

The sub-band domain JND models mainly focus on Con-
trast Sensitive Function (CSF), luminance adaptation, con-
trast masking, and foveated masking. Wei and Ngan [16]
proposed a CSF-based spatio-temporal JND model, in which
gamma correction was introduced to compensate luminance
adaptation effect. In [17], a luminance adaptation JND model
was proposed which took frequency characteristics into the
luminance adaption. Bae and Kim [18] proposed a novel
JND model being applicable to any size of transform kernel,
which introduced a new texture complexity metric to measure
contrast masking effect. In [19], foveated masking was incor-
porated into the proposed temporal-foveated masking model
which also considered the difference between moving and still
objects. Recently, learning techniques have also been applied
to estimating the JND thresholds. In [20], Ki et al. proposed a
regression based method to estimate the JND thresholds under
the distortion with energy reduction. However, the sub-band
domain models require a DCT transform, and can hardly esti-
mate thresholds of the complicated texture regions accurately
since each block is isolated from its surrounding.

The pixel/sub-band domain JND models compute the JND
threshold for each pixel/sub-band separately. By a simple
summation of the estimated JND thresholds, they may not
reflect the total masking effect of a picture accurately. The con-
tribution of different regions to the image quality is different,
and some critical regions together with the worst quality ones
determine the image quality [21]. Moreover, the traditional
JND models mainly focused on the pristine images/videos but
not on the distorted ones, which limits the application areas,
since the images/videos fed into the real-world applications are
usually degraded. Recent studies [22]-[25] demonstrated that
humans cannot perceive continuous-scale visual quality that
changes over a range of coding bit rate, and this phenomenon
was quantified based on the notion of IND. Hu et al. [22] pro-
posed a subjective methodology to find the JND images under
Joint Photographic Experts Group (JPEG) compression, which
are the transition images between two adjacent perceptual
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quality levels. The distortion of JND image reflects the total
masking effect of a picture accurately, which can be defined as
Picture Wise Just Noticeable Difference (PW-JND) referring
to the minimum difference of a picture that can be perceived
by the HVS. Jin er al. [23] constructed the first JND based
image quality data set MCL-JCI. Wang et al. [24] proposed
a subjective methodology to find the video-wise JND videos
and constructed the first video-wise JND based quality data set
MCL-JCV. Fan et al. [25] studied the PW-JND of symmet-
rically and asymmetrically compressed stereoscopic images
for JPEG2000 and H.265 intra coding. Two PW-JND based
stereo image quality datasets have been provided: one for
symmetric compression and one for asymmetric compression.
Huang et al. [26] proposed a machine learning approach to
predict the mean of group-based JND distribution by using the
extracted features of videos. As every one knows, subjective
prediction methods are too time consuming to apply into the
real-world systems. Therefore, it deserves to devise objective
PW-JND prediction method, which is more challenging than
to estimate the pixel/sub-band JND threshold. There are more
factors affecting the PW-JND thresholds, e.g., distortion type,
contrast masking, and luminance adaptation. In this paper,
we propose a PW-JND model to predict PW-JND for pristine
and distorted images. The main contributions of our work can
be summarized as:

1) We formulate the task of predicting PW-JND as a multi-
class classification problem, and propose a framework
to transform the multi-class classification problem to a
binary classification problem.

2) We construct a deep learning based binary classifier
named perceptually lossy/lossless predictor. It can pre-
dict whether a distorted image is perceptually lossy to
its reference or not. The experimental results show that
its mean accuracy reaches 92%.

3) We propose a sliding window based search strategy to
predict the PW-JND based on the prediction results of
the perceptually lossy/lossless predictor.

The paper is organized as follows. In Section II, we present
the motivation of predicting PW-JND which is formulated as
a multi-class classification problem. Section III presents the
framework of the proposed PW-JND model which transforms
the multi-class classification problem to a binary classification
problem. In Section IV, we propose a deep learning based
perceptually lossy/lossless predictor which can predict whether
a distorted image is perceptually lossy to its reference or not,
and evaluate the performance of the predictor. In Section V,
we propose a sliding window based PW-JND search strategy.
In Section VI, we report the experimental results. Section VII
concludes this paper.

II. MOTIVATION AND PROBLEM FORMULATION

The traditional Rate-Distortion (R-D) function shown in
Fig. 1(a) is continuous and convenient for the computation
of coding systems. However, the visual quality experience of
humans is a discrete rather than continuous process. Recent
studies [22], [24] demonstrated that humans can only dis-
tinguish several limited quality levels of the image/video
changing in a range of bit rate. A perceptual distortion function
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Fig. 1. TIllustration of perceptual distortion of JPEG-compressed images,
(c) to (f) are enlarged patches. (a) The difference between JND based stair
R-D function and the traditional R-D function [24]. (b) Pristine image,
size = 6220 KB, MSE = 0. (c) The third PW-JND image, size = 80 KB,
MSE = 199.5. (d) The second PW-JND image, size = 159KB, MSE = 99.6.
(e) The first PW-JND image, size = 235 KB, MSE = 70.2. (f) JPEG-
compressed image with QF 100, size = 1728 KB, MSE = 3.59.

f(R) shown in Fig. 1(a) was proposed, which is a stair step
function about bit rate. In f{R), the jump points denoted
by the circles between two adjacent quality levels are JND
points [22], [23], e.g., the first IND point jumps from the
best to the secondary quality level. It can be seen from f{R)
that the bit rate of the compressed images with the same
perceptual quality vary greatly, and JND points have the lowest
bit rate in a given quality level. For example, Fig. 1(b) is the
pristine image with size 6220 KB, Fig. 1(f)-(c) are enlarged
patches of JPEG-compressed images coded from Fig. 1(b)
with different QF. Fig. 1(f) is cropped from the compressed
image coded with QF 100, Fig. 1(e)-(c) are cropped from
the first, second, and third JND images of Fig. 1(b) [23].
The size of the associated images of patch Fig. 1(f)-(c) are
1728 KB, 235 KB, 159 KB, and 80 KB, and the Mean Squared
Error (MSE) values are 3.95, 70.2, 99.6, and 199.5 respec-
tively. The perceptual quality of Fig. 1(e) is nearly equal
to that of Fig. 1(f), but the size of the associated image of
Fig. 1(e) is much smaller than that of Fig. 1(f). We can also
see the similar phenomenon from Fig. 1(c) and (d). We define
the bit rate of the first, second, and third JND images as the
first, second, third PW-JND respectively. Therefore, PW-JND
prediction can be used to guide coding, which can help save
bit rate without perceptual quality degradation. As far as we
know, it is the first work to predict PW-JND, which is different
from conventional Mean Option Score (MOS) or Difference
Mean Option Score (DMOS) predictors, e.g., SSIM (MS-
SSIM) [27], FSIM [28], GMSD [29], and VSI [30]. First
of all, there is an assumption [22]-[26] that the perception
model on quality of HVS is discrete in PW-JND prediction,
and PW-JND is the boundary between two adjacent perceptual
quality levels of the reference image. However, in conventional
MOS/DMOS prediction it is continuous. Secondly, in PW-JND
prediction, sample label is a relative value which denotes
whether the difference between a distorted image and its
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Fig. 2. Application scenarios of PW-JND model. (a) Application in streaming
service. (b) Application in watermark embedding.

reference can be perceived by humans or not. In MOS/DMOS
evaluating, sample label is an absolute score describing the
overall image quality. Thirdly, PW-JND prediction model will
mainly be used to predict distorted images of which the
difference cannot be perceived by humans. The conventional
MOS/DMOS evaluators [31] were mainly used to evaluate
perceptually lossy images.

Two applications of PW-JND prediction model are listed
in Fig. 2. For streaming media systems, high visual quality
requires large bit rate, and lower bit rate can only provide
low quality visual content. However, higher bit rate than
what it needs means a waste of storage and bandwidth, but
lower bit rate will damage the consumers’ visual experience.
Fig. 2(a) shows a typical framework of streaming media
system including coding, streaming, decoding, and display
process. In the streaming systems, the PW-JND prediction
model can be used for coding or selecting the images/videos
with the smallest size but best quality, which can help
save the bandwidth without damaging consumers’ experience.
Fig. 2(b) shows a digital watermarking system which includes
watermark embedding, watermark extraction, and watermark
verification blocks. Watermark embedding block is responsible
for embedding the digital watermark (i.e, ownership) into
digital media for copyright protection, source tracking, and so
on. The embedded digital watermarks are often required to be
only perceptible under certain conditions for human beings.
Therefore, PW-JND prediction model can be used to guide
the embedding process. Although PW-JND prediction model
has a wide range of applications, there are many challenges
in designing an accurate PW-JND model. First of all, the
PW-JND has a wide range of values affected by the visual
content which varies greatly. Secondly, the distortion can be
introduced at different stages, e.g., pre-processing, compres-
sion, and transmission, each of which affects PW-JND thresh-
olds in different manners. Thirdly, we can hardly build an
accurate mathematical PW-JND model because it is not clear
about the mechanism of HVS in processing visual signals.

In order to formulate the problem of predicting PW-JND,
we define the perceptual distortion function f(R) shown
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in Fig. 1 as

f(R) =D hid(R—by), (1
i=1

where b; is the i"” PW-JND which we need to predict, A; is
the difference between two adjacent quality levels, and J(-) is
defined as

1, x <O.

5(x):{0, x>0 .

The PW-JND can be described as bit rate or other metrics,
e.g., Quality Factor (QF), Peak Signal-to-Noise Ratio (PSNR),
and Structural Similarity Index Measurement (SSIM). There-
fore, we introduce a monotone increasing function g(R) to
map R to K domain shown in Fig. 3. K can be continuous
(e.g., PSNR) or discrete (e.g., QF). In this paper, K is the
index of a distorted image, which denotes that we predict
the PW-JND in a discrete domain. Now, we replace the
perceptual distortion function f(R) with E(K) in the discrete
K domain as

n
E(K)=D h¥(K—-K), Kell,....ml, )
i=1
where K; is the index of the i’ h PW_IND we need to predict,
and W (-) is defined as

0, xeZ"

I, x¢ 2z, @

Y(x) = [
where ZT denotes positive integer, which is the definition of
symbol Z*. It is clear that the K; is a positive integer here
which ranges from 1 to m. Therefore, the task of predicting
the i"" PW-JND of image x can be formulated as a multi-class
classification problem. It can be described as

Ki = Q(x), )

where the input x is a predicting image, and the output K;
is the i”" PW-JND of x, which is considered as a class
label that belongs to [1, ..., m] (m is the number of classes).
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In the following section, we will introduce how to predict the
i" PW-IND in detail.

III. PROPOSED FRAMEWORK OF
PW-JND PREDICTION MODEL

A. Classification Modeling

In the previous section, we modelled the task of predicting
PW-IND for a given image x as a multi-class classification
problem. The straightforward method to solve the multi-class
classification problem is to construct a multi-class classifier
Q(x) shown in Fig. 4(a). The circle denotes the multi-class
classifier and rectangles denote the classes. This model is
severely limited to the training data. The multi-class classi-
fication problem was usually converted to a combination of
binary classification problems, e.g., one-versus-all, one-versus-
one, and hierarchy combinations. The hierarchy combination
is the most popular model due to its superior performance.
One-All (O-A) hierarchy and binary hierarchy model are the
most used hierarchy models, which are illustrated in Fig. 4(b)
and Fig. 4(c) respectively. The circles denote binary classifiers
and rectangles denote classes. O-A hierarchy needs (m — 1)
binary classifiers, which often suffers from the problem of
sample imbalance. The binary hierarchy needs 2°~! binary
classifiers, where L is number of the levels and L = log,m.
For the above models, it is required that each class has
enough data to train the classifiers. Due to the shortage of
training data samples, the above models can hardly employ
deep learning tools directly which achieved impressive success
in both high level [32] and low level [33] computer vision
tasks. As shown in Fig. 4(d), we propose a PW-JND model
consisting of an input part, a binary classifier ®(x, Dist;)
denoted by the circles, a search strategy, and a output part.
The input part comprises a test image x and a distorted image
set D consisting of distorted images Dist;, where i denotes
the image index belonging to [1, ..., m]. The binary classifier
®(x, Dist;) is designed to predict whether a distorted image
Dist; is perceptually lossy from the test image x or not. The
search strategy will be used to predict PW-JND based on the
prediction results of the binary classifier. The output part is
PW-JND prediction result. The proposed PW-JND model can
be used to predict PW-JND for test image x under different
types of distortion. In this work, we predict PW-JND for x
under JPEG compression. Dist; is a JPEG-compressed image
with QF 7, and bigger QF value means higher quality.

For comparison, the required binary classifiers, comparison
times, and mean accuracy of the above four models are listed
in Table I. From the second column, we can see that the
proposed PW-JND model needs to train only one binary
classifier, which is the biggest advantage. From the third
column, we can see that the proposed PW-JND model needs m
computing times in predicting stage, which has the maximum
time cost. In order to obtain the mean accuracy, we assume m
as the number of classes, y; as the probability of class i. For
the multi-class classifier Q(x), e is assumed as the accuracy.
For O-A hierarchy model, we assume the accuracy of classifier

m

C; to be ¢;, and the mean accuracy is about Y y;e;. For the

i=1
binary hierarchy model, e; , is assumed as the accuracy of the
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TABLE I

COMPARISON OF DIFFERENT DECOMPOSITIONS OVER REQUIRED
CLASSIFIERS, COMPARE TIMES, AND MEAN ACCURACY

o NO. Compare
Decompositions Classifiers times(min,max,avg) Mean accuracy
multi-class
classifier 1 (LLD e
™
O-A Hierarchy m-1 (1, m-1, (m-1)/2) > xiei
i=1
Binary Hierarchy ol —T (L,L, L) ITxiej.q
Proposed 1 m 1 — 7(ek,p,€)

classifier C; 4, where j represents the j™ layer and ¢ repre-
sents the ¢’ node in the j* layer. The mean accuracy can
be computed as H;{iej,q,j el[l,L],q € [1,2L] (L denotes
the levels). e; 4 is the accuracy of the binary classifier between
class i to Cy,1. The mean accuracy of proposed model is about
(1 — z(ex, p,€)). tle, p,e€) is the error rate which can be
nearly obtained by

-1

(e, p,&) ~ (1 —er) +3(1 — e)ef
+Qp+3)(1 —e)el”

(p— D!

e—Dlp—e—=1)
er is the mean accuracy of the perceptually lossy/lossless
predictor Cx. p (p > 1) and ¢ (¢ < p) are window size
and threshold of the sliding window, which will be described
in Section V-A in detail. If the accuracy of each classifier in

the above models is assumed to be v and the probability of
each class is assumed to be equal, the mean accuracy is v,

_ p—e+l1 e—1
(1—ep) e .

(6)

m L
% > o, [] v, and (1 — 7 (v, p, ¢)) for multi-class classifier,

O—thiefggchy, binary hierarchy, and the proposed model
respectively. Although the mean accuracy of the proposed
model is not the highest, it overcomes the limitation of
PW-JND data problem and just needs one binary classifier
at the cost of more computing time in predicting phase.

TILIEY:

X

[m/2,3m/4

¢(xsxi)

strategy

(d)

Different decompositions of multi-class classification problem. (a) Multi-class classifier. (b) O-A hierarchy decomposition. (c) Binary hierarchy

In general, there are several advantages of the proposed
PW-JND model. First of all, the proposed model just needs
to train one binary classifier (perceptually lossy/lossless pre-
dictor), which simplifies the problem of predicting PW-JND.
Moreover, for the proposed perceptually lossy/lossless pre-
dictor, training data are perceptually lossy/lossless samples.
The number of lossy/lossless samples is many times that of
PW-JND samples. It can be said that the proposed model
augments the available samples effectively in an indirect way,
which is helpful for deep learning. Secondly, the proposed
search strategy can tolerate some mistakes made by the percep-
tually lossy/lossless predictor. Thirdly, the proposed model can
predict all PW-JNDs for the test image x, which denotes that
the proposed model can predict PW-JND for distorted images.
The PW-JND model also has some shortcomings, e.g., it needs
m comparison times and a distorted image set D in addition
to the test image x.

B. The Framework of the Proposed PW-JND
Prediction Model

Fig. 5 shows the proposed framework of PW-JND model
which includes a training and predicting stage. At the
training stage, we need to train a patch-based perceptually
lossy/lossless predictor @ (x, Dist;) built on Convolutional
Neural Network (CNN), which can predict whether a distorted
image is perceptually lossy from its reference or not. The
proposed perceptually lossy/lossless predictor includes the
following blocks: 1) patch selection module selects the patches
from the reference and distorted images; 2) CNN-based feature
extractor is to extract distinguished features from the selected
patches; 3) patch feature fusion block is responsible for
concatenating the features that extracted from the distorted and
reference image; 4) patch-wise quality measure block mea-
sures the quality of selected patches from the distorted image;
5) picture-wise perceptually lossy/lossless predictor uses the
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Framework of the proposed PW-JND model.

patch-wise quality index to classify Dist; as perceptually lossy
or lossless categories.

The predicting stage includes three steps. Firstly, the test
image x should be compressed with different quality factors
to obtain distorted image set D, where the number of quality
levels depends on the distortion type. In this work, we take
JPEG coder to compress x with QF ranging from 1 to 100
and obtain D including 100 JPEG-compressed images with
different quality. Secondly, each distorted image Dist; in D
will be compared with the test image x by the well trained
perceptually lossy/lossless predictor. The prediction class label
of Dist; will be one if Dist; is perceptually lossy from the
test image x, otherwise zero. Thirdly, the prediction results of
the perceptually lossy/lossless predictor will be fed into the
search strategy which is designed to predict PW-JND finally.

IV. THE CNN BASED PERCEPTUALLY
LOSSY/LOSSLESS PREDICTOR

A. Convolutional Neural Networks Architecture

The proposed perceptually lossy/lossless predictor based on
deep CNN is trained for predicting whether a distorted image
is perceptually lossy from its reference or not. As shown
in Fig. 6, the predictor consists of a patch selection strategy,
a Local Quality Assessment Network (LQAN), and a Global
Classifier Network (GCN). The LQAN includes the feature
extractor, patch feature fusion, and local quality measure
block.

The configurations of the LQAN and GCN are shown
in Table II. The distorted and its reference image are firstly
divided into patches with size M x M, and N patches are
selected from the reference and distorted image in the same
location respectively. The patch size M and patch number N
are parameters which will be discussed later. We borrow
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Fig. 6. Architecture of the proposed perceptually lossy/lossyless predictor.

TABLE I

CONFIGURATIONS OF THE PERCEPTUALLY
LOSSY/LOSSLESS PREDICTOR NETWORK

Network | Layer Type  Kernel Stride Outputs
1 Conv. 3x3 2x2 32
2 Conv. 3x3 2x2 32
3 Conv. 3x3 2x2 64
4 Conv. 3x3 2xX2 64
5 Conv. 3x3 2x2 128
LQAN 6 | Conv. 3x3 2x2 128
7 Conv. 3 X3 2X2 256
8 Conv. 3x3 2x2 256
9 Conv. 3x3 2x2 512
10 Conv. 3x3 2X2 512
Concat - - - 1536
FCl1 FC - - 512
FC2 FC - - I
GCN FC3 FC - - 1

the architecture from [34] to build LQAN which consists of
ten Convolutional (Conv.) layers, one Concatenation (Concat)
layer, and two Full Connected (FC) layers. Each convolutional
layer is activated by the Rectified Linear Unit (ReLU) [35],
and a max pooling layer follows each two convolutional layers.
A concatenation layer following the ten convolutional layers
is to concatenate the features learned from the distorted and
reference patches. The two FC layers FC1 and FC2 adopt
dropout regulation with ratio 0.5. The output of the LQAN is
the quality score of a selected distorted patch, and larger score
denotes worse quality here. The GCN is a binary classification
network which includes one FC layer (FC3) activated by
sigmoid function. The dimension of FC3 is the same as the
patch number N. Each element (a positive value) in FC3 is
the weight of a selected patch, which denotes the contribution
of the corresponding patch to the whole image quality. The
weights are initialized the same as [34] and updated with
LQAN simultaneously. The sigmoid function in the last layer
rescales the output among [0, 1]. If the output is larger
than 0.5, the distorted image is determined as perceptually
lossy from the reference, otherwise lossless.

B. Loss Function

Let F(x;,0) denotes the end-to-end mapping function,
in which x; is the input image pair and 6 is the set of weights.
Therefore, we need to estimate § mapping x; to its ground
truth label. We optimize # by minimizing the cross-entropy
loss. Given a set of n training sample pairs (x;, y;), where
x; consists of a reference image and a distorted image, and
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y; is the ground truth label. We update 6 by minimizing the
following loss function

n

LO) =~ Y Iy log Flx,0) + (1~ y)log(1 — F(xi, D).

t=1
(7

C. Dataset Generation

MCL-JCI dataset [23] is the first PW-JND based image
quality dataset. This dataset comprises 50 pristine images, and
each pristine image has 100 JPEG-compressed images with
different QF ranging from 1 to 100. Most of the pristine
images have 4 to 8 PW-JND images found by subjects, each of
which is the transitional image between two adjacent percep-
tual quality levels. In order to train the proposed predictor,
we make use of PW-JND images to generate perceptually
lossy/lossless training samples. A perceptually lossy/lossless
sample can be described as (x;, y;) which consists of image
data x; and label y;: 1) x; consists of the reference refj
and distorted image Dist;, where refy is the k'" PW-IND
image with QF value of k' (larger k denotes smaller QF),
i is the QF value of its corresponding distorted images Dist;,
which ranges from 1 to (k' — 1). In particular, refy represents
the pristine image, and the QF value i of its corresponding
distorted images ranges 1 to 100. 2) y, is labeled as one
when i ranges 1 to (k + 1)’ denoting the QF value of the
(k+1)"" PW-IND image, which denotes Dist; is perceptually
lossy to refy, otherwise y, is labeled as zero, which denotes
Dist; is perceptually lossless from refy,. The first, second,
third, and fourth ground truth PW-JND in MCL-JCI data set
were used as reference images to generate training samples.
Finally, we generated 5003 positive and 3974 negative image
samples.

For the convenience of training, the generated data set
was split into five subsets. Firstly, the 50 pristine images
were randomly divided into five equal groups Iy, I, I3, Ia,
and Is, each of which includes 10 images. Then, the samples
generated from the images in the same group were added
into one subset. Finally, the generated data set was split as
{S1, 52, S3, S4, Ss} according to the division of the pristine
images {Iy, I», I3, 14, Is}. There is no overlap among the five
subsets.

D. Validation and Optimal Parameters Determination

Each image fed into the proposed perceptually loss/lossless
predictor is represented by N patches with size M x M.
The patches share the convolutional neural networks, and
each patch can be seen as a sample. Therefore, the training
samples are many times that of image samples. Random
cropping data augmentation was used in training, all of the
patches were randomly cropped from the image every epoch
to ensure that as many different patches as possible can be
used [34]. In validation, the N random patches for each
image were only sampled once at the beginning of training in
order to avoid noise. In the experiment, patch size M x M
was set to 32 x 32 and the number of patches N was
set to 32. The variable-controlling approach was taken to
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Fig. 7. Validation accuracy of the perceptually lossy/lossless predictor with
different patch sizes and numbers of selected patches. (a) Different patch sizes.
(b) Different numbers of selected patches.

determine M and N, which will be described in detail in the
following paragraph. Truncated normal initializer was used to
initialize the network weights and Adam [36] was taken as
the gradient descent optimization method. The learning rate
was initialized as 1 x 10~%, which decreases as the number of
iterations increases. Each mini-batch contains 4 images, each
represented by 32 randomly sampled image patches, which
leads to the effective batch size of 128 patches. All of the
training parameters were updated one time when a mini-batch
was processed. It is worth noting that the proposed predictor
is a patch-based network which predicts an image-wise result
by pooling the quality of the selected patches. Therefore,
the selected patches cannot cross mini-batch. We implemented
the networks based on the Tensorflow 1.2.0 and Python 3.5.2,
then trained them on the machine with NVIDIA GTX1080Ti
GPU and memory 32G.

The patch size M and number of patches N are two key
factors for the proposed perceptually lossy/lossless predictor.
However, there are so many combinations of (M, N) that it
is difficult to find the global optimal combination through
exhaustive searching methods. Firstly, the number of patches
N was fixed as 32 [34], the other variables was controlled sta-
ble except patch size. The training and validation set are ran-
domly selected from the generated data set {S7, S2, S3, S4, S5}.
Six patch sizes, M € [8, 16,32, 64, 128, 256], were tested.
The validation accuracy is shown in Fig. 7(a), where x-axis
denotes patch size and y-axis denotes validation accuracy.
It can be seen that the validation accuracy is improved with the
increase of patch size when the patch size is not beyond 32.
The reason lies in the quality of a larger block is closer to the
quality of the entire image. However, the situation is just the
opposite when the patch size is larger than 64. The reason may
be that the parameters of the networks increase exponentially
with the increase of the patch size, which means that we
need more training data. Secondly, patch size M was fixed as
32 (32 x 32), and N € [8,16, 32,64, 128, 256] were tested.
The validation accuracy is shown in Fig. 7(b), where x-axis
denotes patch size and y-axis denotes validation accuracy. The
accuracy is low when N is 8 and 16, and it reaches a high
value when N is 32. The reason may be that a very small
number of selected patches (N = 8, 16) can hardly represent
the whole image quality. It can also be observed that there is
not a significant gain in validation accuracy with the increase
of N when N is larger than 32. Since a larger N brings more
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TABLE III

THE VALIDATION AND TEST ACCURACY IN
FIVE-FOLD CROSS VALIDATION

Str Sva Ste Predictor accy, (%) accy (%)
S2, 83,54 Ss S1 D 90.7 91.1
S3, 84,55 S1 Sa Dy 90.8 94.1
S4, 85,51 Sa S3 D3 935 90.0
Ss, 51,52 S3 Sq Dy 94.4 933
S1,S2,S3 Sa Ss Ds 90.5 91.3

— — average 91.98 91.96

computation time, we selected the number of patches N as 32.
Finally, we selected 32 x 32 as the patch size and 32 as the
number of selected patches in this work.

We randomly chose three subsets for training, one for
validation, and the rest one for testing from the generated
dataset. The training loss is shown in Fig. 8(a), where x-axis
and y-axis denote the training epoch and the training loss
respectively. We can see that the training loss drops down
rapidly at the beginning, and after about 80 training epochs
the loss fluctuates slightly in the later training epochs. The
validation prediction accuracy is shown in Fig. 8(b), where
x-axis and y-axis denote training epoch and validation accu-
racy respectively. We can see that the validation accuracy rises
rapidly at the beginning and keeps stable later. From the above
observations, we can conclude that the predictor converges
at last.

E. Testing of the Perceptually Lossy/Lossless Predictor

In order to further evaluate the generalization capabilities
of the proposed perceptually lossy/lossless predictor, five-
fold cross-validation was made in this work. Firstly, three
subsets were selected to train the predictor, one for valida-
tion, and the other for testing from the generated data set
{S1, 52, S3, S4, Ss}. Once a stable predictor was well trained,
we rotated the test set, and finally we trained five predictors
Dy, Dy, D3, D4, and Ds. The cross validation results are
shown in Table III, where acc, and acc; denote the mean
validation accuracy and testing accuracy. S;r, Spq, Ste are
training, validation, and testing set respectively. We can see
from Table III that: 1) All of the validation and test accuracy
is over 90%. The mean validation and test accuracy are 91.98%
and 91.96% respectively, which denotes that the accuracy of
the predictor is high. 2) The validation accuracy is close to
the corresponding test accuracy, which means a stable perfor-
mance. In this work, the five predictors Dj-Ds were trained
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one time on the entire generated data set including samples
generated from the first to fourth ground truth PW-JND. There
is no need to re-train them in predicting the first to fourth
PW-JND.

V. PROPOSED PW-JND SEARCH STRATEGY

A. Sliding Window Based PW-JND Searching

If the accuracy of the perceptually lossy/lossless predictor
is assumed to be 100%, we can obtain the ideal case shown
in Fig. 9(a), in which x-axis represents distorted images
Dist; (larger i means better quality), and y-axis denotes the
labels predicted by the perceptually lossy/lossless predictor
®(ref, Dist;). y' = 1 (or 0) denotes the distorted image Dist;
is perceptually lossy (or lossless) from the reference ref.
The distorted image Dist; can be determined as the PW-JND
image and the corresponding index k can be predicted as the
PW-JND, which satisfy: 1) H(v) = 1 wheno € [0, ..., k—1],
where H (v) is defined as

H(v) = @ (ref, Diski—); (8)
2) T(n) =0whenn € [1,...,m—k], where T (n) is defined as
T (n) = ©(ref, Diskgin). 9)

It is easy to locate the PW-JND image by searching from
right to left (or left to right) when all of the » (or n)
distorted images are predicted accurately by the perceptually
lossy/lossless predictor. However, it can hardly predict all o
(or n) distorted images accurately, since the predictor may
have a error prediction. It can easily cause that the predicted
PW-JND thresholds differ greatly from the ground truth.
Therefore, we propose a sliding window based PW-JND search
method shown in Fig. 9(b) to determine the PW-JND image.
We slide the window from right to left, and determine the
distorted image Dist; as the PW-JND image which satisfies

14
ZH(D)ze,
0

where p is the window size, and ¢ is a given threshold. The
proposed PW-JND search strategy can tolerate some mistakes
of the perceptually lossy/lossless predictor. Take Fig. 9(b) as
an example, the window size p is set as 5 and ¢ is set as 4.
Although the point A and C are predicted incorrectly, it will
not affect the result that point B will be determined as the
PW-JND image, which is consistent with the ground truth. The
mean accuracy of the proposed PW-JND model can be derived
from (6), and we can see that the accuracy of the perceptually
lossy/lossless predictor is a key factor, and thresholds p and
¢ are also important factors.

(10)

B. The Parameter Determination for the Sliding Window
The window size p and threshold ¢ affect the performance
of the PW-JND search strategy. In order to select a suitable
combination of p and &, we selected D3 as the perceptually
lossy/lossless predictor, I3 as the test image set. The aim is
to ensure that the test images are randomly selected from
MCL-JCI dataset and the test images have never been seen
by the perceptually lossy/lossless predictor. We predicted the
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Fig. 10. The performance of the proposed sliding window based PW-JND

searching strategy with different window sizes and thresholds.

first PW-JND of the test images by fixing window size p,
then changing ¢ (¢ < p). In order to reduce the computational
complexity, ten window sizes p € [1, 2, ..., 9, 10] were tested
in this work. The prediction results are shown in Fig. 10, where
x-axis represents threshold ¢ and y-axis represents | APSNR].
APSNR is the value of ground truth PSNR minus prediction
PSNR, and |- | is absolute value operator. A smaller | APSNR]|
denotes a better performance. Each line represents a window
size p (p = 1 is only one point), and each point denotes a
different threshold in a fixed p. It can be seen that: 1) For
each fixed window size p, there is an inflection point with
the smallest |APSNR|. On the left of the inflection point,
|APSNR| decreases with the increase of ¢. The reason may
be that a very small ¢ can easily result in an underestimation,
which means the predicted PSNR is larger than the ground
truth PSNR and APSNR is negative. The underestimation
becomes small with the increase of . It means that APSNR
becomes larger, but | APSNR| becomes smaller. On the right
of the inflection point, | APSNR] increases with the increase
of ¢. The reason may be that a large ¢ may result in an
overestimation, which means the predicted PSNR is smaller
than the ground truth PSNR and APSNR is positive. The
overestimation increases when ¢ becomes bigger, both of
APSNR and |APSNR| become larger. The inflection point
can be seen as the boundary between underestimation and
overestimation. 2) The |APSNR| of different inflection points
of different window sizes p (except p = 1, 2, 3) are very close.
It means that there are many different parameter combinations
(p, €) to be chosen, such as (4,3), (5,4), (6,5) and so on.
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PW-JND image searching. (a) Ideal case. (b) The proposed strategy.

For such candidate parameter combinations, the prediction
accuracy is similar. We select p = 6 and ¢ = 5 in our
experiment.

VI. EXPERIMENTAL RESULTS AND ANALYSES

A. Experimental Settings

The performance of the proposed PW-JND model was
evaluated on MCL-JCI data set mentioned in Section IV-C.
The five well trained perceptually lossy/lossless predictors D
to Ds mentioned in Section IV-E were used to predict PW-JND
for I to Is mentioned in Section IV-C, respectively. The aim
is to ensure that the test images have never been seen by the
perceptually lossy/lossless predictors. The prediction results
of the 50 images were obtained by combining the prediction
results of the five predictors. It is worth noting that /3 has been
used to select parameters for the proposed PW-JND search
strategy in Section V-B. The five predictors were shared in
predicting the first and second PW-JND. In predicting the first
PW-JND, the test images x was set to the pristine image, and
the distorted image set D consists of the 100 JPEG-coded
images. In predicting the second PW-JND, x was set to the
first ground truth PW-JND image, and D consists of all of
the JPEG-compressed images with smaller QF than that of the
first ground truth PW-JND image. The parameters p and ¢ of
the proposed sliding window based search strategy were set
the same (p = 6,¢ = 5) in predicting the first and second
PW-JND.

In order to compare the performance among the pro-
posed PW-JND model and conventional pixel domain JND
models, the Free Energy Principle based Pixel domain JND
(FEP_PIND) model [11] and Enhanced Pattern Complexity
based Pixel domain JND (EPC_PJND) model [14] were
selected as comparison models. They estimate the JND thresh-
old for each pixel and return a JND thresholds map. Since
the pixel domain models estimate JND threshold for each
pixel but not the whole image, we devise a method for the
comparison models to predict PW-JND of the test image x
as: 1) Z(x, Dist;) is designed to predict whether a distorted
image Dist; is perceptually lossy from x or not, of which
the function is the same as that of the proposed perceptually
lossy/lossless predictor ®(x, Dist;) in Fig. 4(d). 2) Each
JPEG-compressed image in the distorted image set D will be
compared with x, and Z(x, Dist;) is designed to output 1
if Dist; is perceptually lossy from x, otherwise 0. 3) The
distorted image with prediction label 1 and the largest QF will
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be determined as the PW-JND for x. Z(x, Dist;) is defined as

0, S<TxJ

11
I, S>T x4, (n

Z(x, Dist;) = [

where T is the number of pixels of x, § is the number of the
pixels that changes over the corresponding JND thresholds,
and 1 is a given threshold. S is defined as

m n
§=2.2 Uijs

i=1 j=I

(12)

where i, j is the pixel index, U; ; describes whether the change
of pixel Dist(i, j) is over its JND threshold or not. U; ; is
defined as

Uij = {O’ 13)

1, Di,j > M,',j,
where i, j is the pixel index, D; ; = refi; — Dist; j, and
M; ; is the estimated JND threshold calculated by pixel
domain JND models for pixel x; ;. The test image x and
distorted image set D were set the same as the proposed model
mentioned in the previous paragraph. The JND map M was
obtained by pixel domain JND model from the test image x.
In predicting the first and second PW-JND, 1 was set as 0,
0.05, and 0.1. Particularly, 4 = 0 denotes that as long as
there is any one pixel changing over its JND threshold in the
distorted image, it will be considered as a perceptually lossy
image.

QF, PSNR, SSIM, Feature Similarity Index Measure-
ment (FSIM), Gradient Magnitude Similarity Deviation
(GMSD) [29], Visual Saliency Index (VSI) [30], and Percep-
tually Weighted Mean Squared Error (PWMSE) [37] metrics
were selected to describe PW-JND. The difference in the above
metrics between the predicted PW-JND and the ground truth
PW-IND was selected as the evaluation index. For example,
AQF is the result of ground truth QF minus prediction QF.
A positive AQF denotes an underestimation, a negative AQF
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Performance comparison in predicting the first PW-JND. (a) PSNR. (b) QF.

means an overestimation, and A QF = 0 denotes the estima-
tion is consistent with the ground truth. For a further analysis,
the absolute difference (|- |) was selected as another evaluation
index. For example, |AQF] is the absolute value of AQF.
A larger | AQF| means a greater prediction error.

B. Performance of the Proposed PW-JND
Prediction Model Evaluation

1) Predicting the First PW-JND: The prediction results of
the first PW-JND are plotted in Fig. 11(a) and Fig. 11(b),
where x-axis represents image index, and y-axis in Fig. 11(a)
and Fig. 11(b) represent APSNR and AQF respectively. From
Fig. 11(a), it can be observed that: 1) When A = 0, all of the
APSNR values of FEP_PJND and EPC_JND are below x-axis,
which denotes all the PW-JNDs were underestimated. On the
other hand, when A = 0.1, all of the APSNR values of the two
comparison models are over x-axis, which denotes all the
PW-JNDs were overestimated. 2) Most of APSNR values of
the proposed PW-JND are very close to zero, which means the
proposed model has a high prediction accuracy. 3) Compared
with the two pixel domain models, all APSNR values of
the proposed PW-JND are closer to zero, which denotes the
proposed PW-JND model has the highest prediction accuracy.
From Fig. 11(b), we can also come to the conclusion that the
proposed model has the highest accuracy.

For a further comparison, the mean and variance of the
absolute difference are listed in Table IV. From the mean part,
it can be observed that the mean of |AQF| and |APSNR| of
the proposed PW-JND are 8.7 and 0.8 respectively, which are
the smallest among all of the compared models. The similar
phenomenon can be obtained in other metrics. Therefore,
we can conclude that the accuracy of the proposed model is
the highest. From the variance part in Table IV, we can see that
all of variance values of the proposed model are the smallest,
which denotes the proposed model is the most stable one.
Therefore, we can conclude that the proposed model performs
best in predicting the PW-JND for pristine images.
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TABLE IV
COMPARISON OF THE FIRST PW-JND PREDICTION IN TERMS OF THE MEAN AND VARIANCE OF ABSOLUTE PREDICTION DIFFERENCE

Index A Models |AQF| | APSNR| |ASSIM| | AFSIM\ |AGMSD| | AVSI:J' | APWMSE]|
(x10") (x1072) (x107%) (x10™2) (x10™2)
0 FEP_PIND [11] 5.94 17.1 2.05 3.66 1.67 1.51 0.41
EPC_PIND [14] 5.74 12.8 1.90 3.00 1.60 1.00 0.41
0.05 FEP_PJND [11] 2.46 291 2.30 7.00 1.94 2.00 1.21
Mean . EPC_PIND [14] 241 2.51 1.34 5.00 1.30 1.00 1.07
0.10 FEP_PIJND [11] 2.29 3.93 5.00 21.0 4.60 6.00 1.65
) EPC_PJND [14] 2.04 2.95 3.40 12.0 3.00 4.00 1.27
— Proposed 0.87 0.82 0.40 1.00 0.40 0.40 0.37
0 FEP_PIJND [11] 9.40 6.38 5.76 1.20 3.31 2.68 6.50
EPC_PJND [11] 9.40 4.36 5.62 1.18 3.31 2.66 6.51
0.05 FEP_PJND [11] 20.2 5.72 205 33.1 72.7 226 83.4
Variance ) EPC_PIND [14] 22.0 3.46 244 28.0 15.6 41.3 54.1
0.10 FEP_PIND [11] 22.1 11.3 349 76.7 195 523 165
) EPC_PJND [14] 18.0 6.96 243 38.1 101 261 104
— Proposed 6.80 0.66 1.24 0.877 1.17 1.02 0.0012
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Fig. 12. Performance comparison in predicting the second PW-JND. (a) PSNR. (b) QF.

2) Predicting the Second PW-JND: The prediction results
of the second PW-JND are plotted in Fig. 12(a) and Fig. 12(b).
It can be seen that the phenomenon of Fig. 12(a) is very similar
to that shown in Fig. 11(a). We can obtain the following con-
clusions: 1) When A = 0 all the APSNR were underestimated
by the two comparison models, and when 42 = 0.1 all the
APSNR were overestimated by the two comparison models.
2) The APSNR values of the proposed model are closer to
zero than that of the two comparison models, which denotes
that the proposed model has the highest accuracy. Another
phenomenon is that the APSNR values are closer to ground
truth compared with the first PW-JND thresholds predicting,
which denotes it is easier to predict the second PW-JND
than to predict the first PW-JND. The reason may be that
the degradation between the distorted image and test image x
is becoming larger. The conclusions also can be convinced
by Fig. 12(b), and we will not give a further analysis for
Fig. 12(b).

The mean and variance of the absolute difference are listed
in Table V. From the mean part, we can see that the mean of
|AQF|, |APSNR|, and |ASSIM| of the proposed PW-JND are

3.14, 0.76, and 0.53 x 102, which are the smallest compared
with the other models. From the variance part, it can be seen
that the variances of |AQF|, | APSNR|, and |ASSIM| of the
proposed model are 12.3, 0.65, and 0.29 x 10~*, which are also
the smallest. Compared with the two comparison models with
different thresholds in different metrics, the mean and variance
of the proposed model are the smallest except the variance of
AFSIM. Therefore, we can conclude that the proposed model
performs best among the comparison models.

C. Visual Quality Comparison

Moreover, subjective quality of the prediction results for
“ImageJND_SRC13” and “ImageJND_SRC39” are shown
in Fig. 13 and Fig. 14 respectively, in which the enlarged
patches are the most quality sensitive regions. Take Fig. 13 as
an example, (a) is the source image, (b) to (d) are enlarged
patches of QF 100, the first ground truth PW-JND (QF 31), and
the prediction result of the proposed model (QF 35), respec-
tively. From the first row, we can see that the perceptual quality
of (b), (c), and (d) are very similar meanwhile the image
size and PSNR of (c) and (d) are very close. It demonstrates
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TABLE V
COMPARISON OF THE SECOND PW-JND PREDICTION IN TERMS OF THE MEAN AND VARIANCE OF ABSOLUTE PREDICTION DIFFERENCE

Index A Models |AQF| | APSNR| |ASSIM]| | AFSIM]| | AGMSD| |Avsl| | APWMSE]|
(x1072) (x107%) (x1072) (x1072)
o FEP_PIND [11] 1.9 9.27 2.73 6.20 2.46 0.23 2.17
EPC_PIND [14] 1.9 927 2.73 6.20 2.46 0.23 2.17
005 FEP_PIND [11] 821 2.66 217 721 1.87 221 0.59
Mean : EPC_PJND [14] 738 251 1.48 452 133 2.12 0.46
010 FEP_PIND [11] 127 3.44 439 19.4 413 2.55 T.11
: EPC_PIND [14] 9.94 241 2.75 10.6 2.46 228 0.75
— Proposed 314 0.76 0.53 212 0.45 0.04 0.18
- - (x10%) (x107) (x10~ %) (x1077) (x1077) (x10~%) (x107%)

B FEP_PIND [11] 1.98 746 161 2.14 8.07 1.03 3.68
EPC_PIND [14] 1.98 7.46 1.61 2.14 8.07 1.03 3.68
0.05 FEP_PIND [11] 5.86 445 178 26.2 64.9 19840 0.47
Variance : EPC_PIND [14] 3.98 2.58 152 843 9.93 19827 0.09
.10 FEP_PIND [11] 132 955 30.6 684 167.1 19678 .16
: EPC_PIND [14] 1.4 6.32 20,5 32.1 93.9 19686 0.74
— Proposed 1.23 0.65 0.29 412 1.77 0.21 0.02

(e) ()

Fig. 13.  Visual quality comparison of source image “ImageJND_SRC13”
in MCL-JCI, (b)-(j) are enlarged patches, and {*, *, *} denotes QF, image
size (KB), PSNR (dB) of the associated images. (a) Original image. (b) Image
with best quality under JPEG compression, {100, 1334.1, 50.03}. (c) The first
ground truth PW-JND, {31, 105.7, 34.67}. (d) Proposed, {35, 113.7, 35.12}.
(e) to (g) are prediction results of EPC_PIND [14] with 4 = 0, 0.05, 0.10,
{97, 762.4, 45.69}, {21, 85.4, 33.19}, {10, 59.2, 29.96}. (h) to (j) are
prediction results of FEP_PJND [11] with 2 = 0, 0.05, 0.10, {99, 1148.2,
49.63}, {15, 71.8, 31.83}, {7, 51, 28.23}.

the effectiveness of the proposed model. In the second row,
(e) to (g) and (h) to (j) are enlarged images of prediction
results of EPC_PJND [14] and FEP_PIND [11] with A =
0, 0.05, 0.10, respectively. When 1 = 0, the perceptual quality
of (e) and (h) is almost the same as that of (b), however
the size of corresponding images is much larger than that
of (d). When 1 = 0.05, the distortion of (f) and (i) can be
easily perceived by HVS. When A = 0.10, the perceptual
quality of (g) and (j) is unacceptable. From the second row,
we can conclude that the proposed model performs better than
EPC_PIND and FEP_PJND model. Similar phenomenon can
be seen from Fig. 14.

D. Computational Complexity of the PW-JND Model

The computational complexity of the proposed model
mainly includes the time spent in compressing the test image
and predicting whether a JPEG-compressed image is per-
ceptually lossy from the test image or not. The time spent
in PW-JND searching can be ignored. We used MATLAB

() (2 (h)

Fig. 14.  Visual quality comparison of source image “ImageJND_SRC39”
in MCL-JCI, (b)-(j) are enlarged patches, and {*, *, *} denotes QF, image
size (KB), PSNR (dB) of the associated images. (a) Original image. (b) Image
with best quality under JPEG compression, {100, 1143.4, 49.12}. (c¢) The first
ground truth PW-JND, {44, 132.9, 35.67}. (d) Proposed, {41, 127.4, 35.41}.
(e) to (g) are prediction results of EPC_PIND [14] with 4 = 0, 0.05, 0.10,
{97, 684.8, 47.03}, {23, 90.9, 33.26}, {11, 61.7, 30.20}. (h) to (j) are
prediction results of FEP_PJND [11] with 4/ = 0,0.05,0.10, {99, 967.9,
48.59}, {20, 83.7, 32.72}, {5, 53.3, 28.66}.

TABLE VI

THE RUNNING TIME SPENT IN PREDICTING THE
FIRST PW-JND (SECONDS)

Test set Compressing time | Predicting time Total

S1 45.66 83.31 128.97

Sa 45.73 81.22 126.95

S3 45.10 80.43 125.53

Sy 48.96 85.02 133.98

Ss 43.86 76.89 120.75

total 229.38 406.88 636.26

Mean time per image 4.58 8.13 12.71

code “imwrite (image, imageName, ‘jpeg’, ‘Quality’, QF)”
to compress the test image, and implemented the predictor
on Tensorflow 1.2.0 and Python 3.5.2. All of the tests were
finished on a desktop computer with Intel CPU i-7-6700K,
GPU GTX1080Ti, and 32G memory. The running time spent
in predicting the first PW-JND for the 50 pristine images
in MCL-JCI dataset is shown in Table VI. The test sets in
the first column are the same as Table III, and each set
includes ten 1920x 1080 images. As the penultimate row
shows, the mean compressing, predicting, and total time of
predicting the first PW-JNDs for 50 images are 229.38, 406.88,
and 636.26 seconds respectively. We can also see from the
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last row that predicting the first PW-JND for a pristine image
needs about 12.71 seconds (mean) which includes compressing
time 4.58 seconds (mean) and predicting time 8.13 seconds
(mean). From the above observations, it can be seen that the
computational complexity of the proposed model is acceptable.
We will focus on reducing the computational complexity in the
future work.

E. Application in Image Compression and Transmission

The PW-JND reveals the minimum difference of a picture
that HVS can perceive, which can be used for selecting
parameters in image compression. We take JPEG coder to
compress the 50 images in MCL-JCI dataset with the predicted
PW-JND (QF). The mean of bit rate saving C and prediction
error A Q were designed as evaluation indexes. C is defined as

C = (Rie — Rp) / Rie x 100%, (14)

where R, and R, are the bit rate of the test image x
and predicted PW-JND image respectively. In predicting the
first PW-JND, x is JPEG-compressed image with QF 100.
In predicting the second PW-JND, x is the first ground truth
PW-JND image; AQ (Q € PSNR, QF) is defined as

AQ:[QN—QP O > Qp )

0 O < Op,
where Q;, and Q are the ground truth and predicted PW-JND
image respectively. When Q,, > Q,, the predicted PW-JND
image has a perceptual loss, which is regarded as a prediction
error.

The experimental results of the first PW-JND are shown
in Fig. 15, where y-axis represents the mean of bit rate
saving, and x-axis represents the mean of APSNR and AQF in
Fig. 15(a) and Fig. 15(b) respectively. In Fig. 15, the diamond
denotes the ground truth, the red circles from right to left
represent the results of adding n € [1,2,...,9] to the
predicted QF of the proposed model. The dotted and solid line
denote the FEP_PIND and EPC_PJND model. The squares
and triangles represent the results when A (see (11)) was set
to 0.025, 0.05, 0.075, 0.1, and 0.125, respectively. From the
red circles, we can see that the bit rate saving of the proposed

9%
-v

oat

92

¢
88

1 FEP_PJND
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Proposed
Ground truth

Bit rate saving (%)

I I I I I
0 5 10 15 20 25 30
AQF

(b)

Bit rate saving versus APSNR and AQF of the first prediction PW-JND. (a) A PSNR. (b) AQF.

model increases from 0.878 to 0.894 when n increases from
1 to 9, APSNR increases from 0.175 to 0.451 (see Fig. 15(a)),
and AQF increases 1.78 from to 4.68 (see Fig. 15(b)). It can be
concluded that the proposed model has a high bit rate saving
which is close to that of the ground truth. It also has a stable
performance when the QF varies. From the dotted and solid
line, we can see that the performance of the FEP_PIND and
EPC_PJND model is very similar. The bitrate saving, APSNR,
and AQF vary greatly when 1 increases from 0.025 to 0.125.
The comparison models need to pay large APSNR (or AQF) to
achieve a high bit rate saving. If we fix the APSNR (or AQF),
the proposed model has a larger bit rate saving. If we fix
the bit rate saving, the proposed model has a lower APSNR
and AQF. Therefore, we can conclude that the proposed model
has a better performance than the two pixel domain models.
The experimental results of the second PW-JND are plotted
on Fig. 16, where the x-axis, y-axis, lines, and legends are
the same with that in Fig. 15. We set 4 the same as the first
PW-JND case and n € [1, 2, ..., 5]. The bit rate saving of the
proposed model is close to that of the ground truth, which is
smaller than that of the first PW-JND case. The reason may
be that the JPEG coder compresses image more at a high QF
level. We can also see from Fig. 16 the proposed model has
the best performance.

As mentioned in Section I, we can predict PW-JND in
the bit rate domain (R) or other discrete/continuous domains,
e.g., QF, and PSNR. Therefore, we analyse the correlation
between the prediction and ground truth PW-JNDs in QF,
PSNR, and bit rate domain. The scatter plots map of predicted
PW-JNDs and ground truth PW-JNDs are shown in Fig. 17,
where x-axis represents ground truth PW-JNDs, and y-axis
represents the predicted PW-JNDs. We can see from Fig. 17
that: 1) The correlation of QF (R? = 0.12) and bit rate
prediction (R? = 0.615) is low. Especially, the correlation
of QF prediction has the lowest correlation. The ground truth
PW-IND in MCL-JCI data set is a statistical value, around
which there is an ambiguous region in perceptual quality.
The quality difference among the distorted images in such
region is very hard to distinguish by humans. The width of
the region is determined by image content and subjects, which
is big for most images in QF. There is a great possibility
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that the predicted QF falls within this region. The wider the
ambiguous region, the greater possibility the predicted QF
would deviate from the ground truth, thus leading to a lower
correlation of QF prediction. 2) The PSNR has the highest
correlation (R2 = 0.908), which denotes that we can predict
the PW-JNDs in PSNR domain. The predicted PSNR can be
used in different image/video processing algorithms: 1) It can
be used to compress image/video with the lowest bit rate
without perceptual quality degradation. 2) It is also helpful for
streaming system to select the images/videos with the smallest
size but best quality, which can save the bandwidth without
damaging consumers’ experience. 3) It can be used to guide
watermarks embedding, which ensure the impairment of the
embedded digital watermarks cannot perceived by the humans.

VII. CONCLUSION

In this paper, we propose a deep learning method based
Picture Wise Just Noticeable Difference (PW-JND) prediction
model. Firstly, the task of predicting PW-JND is formulated
as a multi-class classification problem, which is transformed
to a binary classification. Secondly, we construct a deep learn-
ing based binary classifier named perceptually lossy/lossless
predictor to predict whether a distorted image is perceptually
lossy to its reference or not. Finally, we propose a sliding win-
dow based PW-JND search strategy to predict the PW-JND.

Experimental results on comparison with the conventional just
noticeable difference models demonstrate the effectiveness of
the proposed model.
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